题目:已知n个人(以编号0,1,2…n-1分别表示)围坐在一起。从编号为0的人开始报数,数到k的那个人出列;他的下一个人又从1开始报数,数到k的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列,最后一个出列的人为胜利者。求胜利者编号
递归的方法
当\(m=10, \quad k=3\)去掉一个元素时,变为一个\(m=9, \quad k=3\)的约瑟夫环问题,且有如下关系$$3 = (0 + 3) \% 10 \quad 4 = (1 + 3) \% 10 \dots 1 = (8 + 3) \% 10 \\\Downarrow \\3 = (0 + k) \% m \quad 4 = (1 + k) \% m \dots 1 = (8 + k) \% m$$当\(m = 10, \quad k=3\)时,设约瑟夫环最后一个出列的人为\(\text{Joseph}(10, 3)\),则有如下关系$$\text{Joseph}(10, 3) = (\text{Joseph}(9, 3) + k) \% m\\\vdots \\ \text{Joseph}(2, 3) = (\text{Joseph}(1, 3) + k) \% m$$C++实现如下1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
using namespace std;
int josephLoop(int m, int k)
{
if(m <= 0 || k <= 0) return -1;
if(m == 1) return 0;
return (josephLoop(m-1, k) + k) % m;
}
int main(int argc, char* argv[])
{
int m = 10, k = 3;
cout << josephLoop(m, k) << endl;
return 0;
}
输出结果:3
输出整个出队顺序的C++实现为1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
using namespace std;
int josephLoop_res(int m, int k, int i)
{
if(m <= 0 || k <= 0) return -1;
if(i == 1) return (m + k - 1) % m;
return (josephLoop_res(m-1, k, i-1) + k) % m;
}
int main(int argc, char* argv[])
{
int m = 10, k = 3;
cout << "出队序列:" << endl;
for(int i = 1; i <= m; ++i)
cout << josephLoop_res(m, k, i) << " ";
cout << endl;
return 0;
}
输出结果:2 5 8 1 6 0 7 4 9 3
循环链表实现
C++实现如下1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
using namespace std;
struct Node
{
int val;
Node* next;
Node(int n): val(n), next(nullptr){}
};
void josephus(int m, int k)
{
// creat loop list
if(k < 2) return;
Node* pHead = new Node(0);
Node* currentNode = pHead;
for(int i = 1; i < m; ++i)
{
Node* tmpNode = new Node(i);
currentNode->next = tmpNode;
currentNode = tmpNode;
}
currentNode->next = pHead; // 尾节点和首节点相连接
Node* pTail = currentNode;
// 模拟约瑟夫环问题,删除节点
for(int i = 0; i < m-1; ++i)
{
int k_tmp = k;
Node* parentNode = nullptr;
Node* gNode = nullptr; // 祖父节点
while(k_tmp > 0)
{
gNode = parentNode;
parentNode = pHead;
pHead = pHead->next;
k_tmp--;
}
gNode->next = pHead;
cout << parentNode->val << " ";
}
cout << pHead->val << endl;
}
int main()
{
int m = 10, k = 3;
if(k == 1) return m-1;
josephus(m, k);
return 0;
}
输出结果:2 5 8 1 6 0 7 4 9 3